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Abstract The force constants for several diatomic molecules
were calculated by the derivatives of the electronic kinetic
energy within the restricted Hartree–Fock formalism. The
uniform scaling procedure was utilized in order to satisfy
the virial theorem. The decomposition of the force constant
was performed by partitioning the derivatives of the kinetic
energy in several ways.
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1 Introduction

In the Born–Oppenheimer approximation, the molecular elec-
tronic virial theorem for a diatomic molecule is expressed as
[1,2]

2T + V + R
dE

dR
= 0. (1)

Here, T is the electronic kinetic energy, V is the potential
energy, which includes the internuclear repulsion energy, E
is the molecular electronic energy,
E = T + V, (2)
and R is the internuclear distance. Using Eq. 2, the virial
theorem can be rewritten in either of two forms:

T + E + R
dE

dR
= 0, (3)

−V + 2E + R
dE

dR
= 0. (4)

At the equilibrium internuclear distance R = Re (where
dE/dR = 0), the following relation is obtained by differ-
entiating Eqs. 3 and 4 with respect to R:(

d2E

dR2

)
Re

= −
(

1

R

dT

dR

)
Re

=
(

1

R

dV

dR

)
Re

. (5)
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Equation 5 shows that the force constant (d2E/dR2)Re is given
by the derivative of T or V with respect to R. Several theoret-
ical calculations of quadratic or higher force constants have
been carried out using the variation in the electronic kinetic
energy [3–8].

In the present letter, we took notice of the relation between
the force constant and the electronic kinetic energy in Eq. 5
and investigated the force constants for some diatomic mol-
ecules by differentiating the kinetic energies. Moreover, the
decomposition of the force constant was performed by par-
titioning the derivatives of the electronic kinetic energy in
several ways. We used the Hartree–Fock wave functions in
which the virial theorem is satisfied by the uniform scaling
technique [9,10]. The force constants for diatomic molecules
have mainly been discussed in terms of the Hellmann–Feyn-
man theorem [11,12] and the perturbation theory [13]. On the
other hand, the significance of the electronic kinetic energies
in the chemical bond has been emphasized from many points
of view [14–24], so the discussion of the relation between
the force constant and the electronic kinetic energy is also
considered an interesting problem.

2 Method of calculations

The restricted Hartree–Fock (RHF) method was used with
the Pople’s 6–31G(d, p) basis set. The uniform scaling pro-
cedure proposed by Lehd and Jensen [25] was utilized in
order to satisfy the virial theorem. The derivative of the elec-
tronic kinetic energy with respect to R was estimated by the
numerical differentiation of the five-point formula (�R =
±0.0005Å, ±0.001Å).All the ab initio calculations were per-
formed using the GAMESS program package [26].

3 Results and discussion

3.1 Effect of the uniform scaling

The results of exponent optimization in the uniform scaling
are shown in Table 1. For comparison, the results without the
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Table 2 Results without the uniform scaling

R (Å) E (au) d2E/dR2 −V/2T

(mDyn/Å)

H2 0.7326 −1.131334 6.3786 0.998005
HeH+ 0.7693 −2.924721 5.2053 0.999007
LiH 1.6300 −7.981340 1.0476 0.998938
N2 1.0784 −108.943949 31.3789 1.001700
CO 1.1138 −112.737877 24.0320 1.001205

uniform scaling are also shown in Table 2. The equilibrium
distance Re, the total electronic energy E, and the optimized
scaling factor sopt are in agreement with the previous study by
Koga and Kobayashi [10]. The improvement of the equilib-
rium distance and the total energy by the uniform scaling is
small. On the other hand, the differences between the force
constant estimated by the derivative of the kinetic energy,
−(1/R)dT/dR, and the analytical second derivative of the
total energy calculated without the uniform scaling are large
for the H2 and HeH+ molecules, while the differences are
small in LiH, N2, and CO molecules.

In the uniform scaling method, the electronic kinetic en-
ergy T is regarded as a function of the two parameters R
and s, and the parameter s also depends on R. The following
relation
dT

dR
= ∂T

∂R
+ ∂T

∂s

ds

dR
(6)

is then satisfied. Each component estimated by the numer-
ical differentiation is shown in Table 1. It is found that the
derivative of T with respect to R is significantly related to s.

3.2 The orbital partitioning

The decomposition of the force constant was examined in
terms of the orbital kinetic energy. Concerning the ab initio
energy decomposition, the orbital kinetic energy partitioning
under the virial theorem has been applied to the Walsh-type
diagrams [21,22]. Since the electronic kinetic energy is the
expectation value for the one-electron operator, the kinetic
energy T for the RHF wave function is expressed as the sum
of the orbital kinetic energy τi(i = 1 . . . occ.). Therefore,
Eq. 5 becomes(

d2E

dR2

)
Re

=
occ.∑
i

(
− 2

R

dτi

dR

)
Re

. (7)

In Eq. 7, it is shown that the force constant is composed of the
derivatives of the orbital kinetic energy with respect to R [4].
By using this relation, the decomposition of the force con-
stant into the derivatives of each orbital kinetic energy was
performed. The results are represented in Table 3. In the case
of LiH, the derivative term of the 1σ orbital, −(2/R)dτ1/dR,
is nearly zero and the 2σ orbital mostly contributes to the
force constant. In the N2 molecule, the derivative terms of the
1σu, 2σg and 1πu orbitals positively contribute to the force
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Table 3 The orbital energy εi , the orbital kinetic energy τi , and the derivative of the orbital kinetic energy

ith MO εi (au) τi (au) −(2/R)dτi⊥/dR −(2/R)dτi||/dR −(2/R)dτi/dR

(mDyn/Å) (mDyn/Å) (mDyn/Å)

H2
1 −0.5969 0.565701 4.0870 2.1602 6.2472
HeH+
1 −1.6354 1.462376 4.1644 0.9010 5.0654
LiH
1 (1σ ) −2.4529 3.603193 −0.0299 −0.0258 −0.0557
2 (2σ ) −0.2982 0.387483 0.5429 0.5602 1.1031
N2
1 (1σg) −15.6856 22.149450 −0.3141 −0.5126 −0.8267
2 (1σu) −15.6818 22.186874 0.6389 0.5831 1.2220
3 (2σg) −1.4881 2.576364 11.2139 12.0331 23.2470
4 (2σu) −0.7696 2.284422 −3.4304 0.3362 −3.0942
5 (3σg) −0.6313 2.013870 −0.7479 0.2978 −0.4501
6, 7 (1πu) −0.6199 1.630629 5.2229 0.4150 5.6379
CO
1 (1σ ) −20.6706 29.227638 0.2707 0.1130 0.3837
2 (2σ ) −11.3526 16.054637 −0.3108 −0.2374 −0.5482
3 (3σ ) −1.5292 2.889485 6.8992 8.1159 15.0151
4 (4σ ) −0.7976 2.643774 0.5538 8.9203 9.4741
5, 6 (1π ) −0.6391 1.987008 3.1392 −0.1194 3.0198
7 (5σ ) −0.5456 1.579531 −0.9292 −5.3998 −6.3290

Table 4 Decomposition of the electronic kinetic energy based on the atom-bond partitioning

A–B TA (au) TAB (au) TB (au) −(1/R)dTA/dR (mDyn/Å) −(1/R)dTAB/dR (mDyn/Å) −(1/R)dTB/dR (mDyn/Å)
⊥ || (total) ⊥ || (total) ⊥ || (total)

H–H 0.410949 0.309505 0.410949 0.7553 0.3776 1.1329 2.5764 1.4050 3.9814 0.7553 0.3776 1.1329
(He–H)+ 2.562091 0.222948 0.139712 −1.8903 −0.9617 −2.8520 4.7306 1.1683 5.8989 1.3242 0.6944 2.0186
Li−H 7.405974 0.145222 0.430155 0.3433 0.2281 0.5714 0.1050 0.2721 0.3772 0.0647 0.0341 0.0988
N–N 53.670241 1.603993 53.670241 3.6968 3.1212 6.8180 10.4126 7.3253 17.7379 3.6968 3.1212 6.8180
C–O 37.175257 1.401994 74.160913 3.8279 2.3504 6.1783 9.3200 5.7955 15.1155 −0.3859 3.1273 2.7415

constant and the 2σg-orbital term is the largest. At the equi-
librium distance, these orbital kinetic energies decrease as R
increases. On the other hand, the terms of the other orbitals
(1σg , 2σu, and 3σg) negatively contribute to the force con-
stant. For the isoelectronic molecule CO, the derivative terms
of the 1σ , 3σ , 4σ , and 1π orbitals have positive contributions
while the terms of the 2σ and 5σ orbitals have negative con-
tributions. Thus, the terms of the 2sσ (2σg in N2 and 3σ in
CO) and 1π orbitals have positive contributions to the force
constants in both the N2 and CO molecules, although the
characteristics of the kinetic energies of the other σ orbitals
in CO are different from those in N2. The force constants
calculated by differentiating the electronic kinetic energies
are 31.3739 mDyn/Å for N2 and 24.0354 mDyn/Å for CO as
shown in Table 1, and therefore, the force constant of N2
is larger than that of CO. The values of the 1π -orbital term
are 5.6379 mDyn/Å for N2 and 3.0198 mDyn/Å for CO, so
the difference in the 1π -orbital term is 2.6181 mDyn/Å. The
sums of the σ -orbital terms are 20.0980 mDyn/Å for N2 and
17.9957 mDyn/Å for CO and the difference in the σ -orbi-
tal part is 2.1023 mDyn/Å. Concerning the difference in the
force constants between the two molecules, the π -orbital part
is found to be larger than the σ -orbital one.

Bader et al. [27, 28] examined the contribution of the elec-
trons in each molecular orbital to the total electronic force

acting on the nuclei and discussed the chemical binding and
properties of the diatomic molecules. In LiH, the 2σ orbital,
which is localized on the proton, has been reported to have
the binding character. In N2, the 2σg orbital has the highest
binding of the orbital charge distribution while the 2σu orbi-
tal has the highest anti-binding. The electronic density in the
3σg orbital is weakly anti-binding. They also clarified that
the chemical binding of the isoelectronic system CO differs
from that in N2. These tendencies are in agreement with the
present results based on the derivatives of the orbital kinetic
energies.

3.3 The atom-bond partitioning

The atom-bond partitioning [29], which is one of the meth-
ods used for the energy decomposition, was applied to the
decomposition of the force constant. In a linear combination
of atomic orbitals for the molecular orbital (LCAO-MO), the
electronic kinetic energy is also represented as

T =
∑
rs

Prs trs . (8)

Here, trs is the AO kinetic energy integral and Prs is the
bond-order matrix. The electronic kinetic energy is divided
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into the following three terms according to the centers of the
constituent AOs [29,30]:

T = TA + TAB + TB, (9)

with

TA =
∑
r∈A

∑
s∈A

Prstrs,

TAB = 2
∑
r∈A

∑
s∈B

Prstrs, (10)

TB =
∑
r∈B

∑
s∈B

Prstrs .

The one-center terms TA and TB are regarded as the elec-
tronic kinetic energy for atoms A and B, respectively. The
two-center term TAB is the kinetic energy between atoms A
and B, which is expected to contribute to the chemical bond
through the overlap. By estimating the derivatives of these
kinetic energy terms, the decomposition of the force constant
based on the atom-bond partitioning method was performed.
As shown in Table 4, the derivatives of TAB have positive
contributions to the force constants (−(1/R)dTAB/dR > 0)
in all the molecules, so the kinetic energies in the overlap
decrease for the increasing R at R = Re. The derivatives
of the atomic kinetic energies TA and TB also have positive
contributions in all the molecules except for HeH+. In the
case of HeH+, the electron distribution lies very close to the
He atom. It is well-known that the partitioning method based
on AOs involves arbitrariness, so it is necessary to examine
carefully the validity of this method not only for the force
constant partitioning but also for the energy partitioning in
the future study.

3.4 The Cartesian components partitioning

Based on the kinetic energy operator in the Cartesian coor-
dinate, the electronic kinetic energy can also be decomposed
into the Cartesian components. If the z axis is chosen to coin-
cide with the internuclear axis, the kinetic energy is divided
into the bond-parallel component T|| and the bond-perpen-
dicular component T⊥ as follows:

T = T⊥ + T||, (11)

with

T⊥ = Tx + Ty, (12)

T|| = Tz.

Ruedenberg et al. [14,15] examined the formation of the
chemical bond in the H+

2 system and found that the bond-par-
allel component of the kinetic energy plays an important role
in the bond formation. Bader and Preston [17] also discussed
the relation between the kinetic energy and the electron den-
sity by examining the parallel and the perpendicular kinetic
energies.

This partitioning method was applied to both the force
constants and the derivatives of each orbital kinetic energy,

which constitute the force constant. The results of the decom-
position of the force constant (−(1/R)dT⊥/dR,
−(1/R)dT||/dR) are shown in Table 1. The results of the
application to the constituent orbital terms (−(2/R)dτi⊥/dR,
−(2/R)dτi||/dR) are shown in Table 3. Moreover, this type
of decomposition is able to be applied to the atom-bond par-
titioning as shown in Table 4.

In H2 and HeH+ molecules, the derivative terms of the
perpendicular component, −(1/R)dT⊥/dR, are larger than
those of the parallel component, −(1/R)dT||/dR. In LiH
molecule, the term of the perpendicular component is smaller
than that of the parallel component. Thus, the ratio of the two
components in each molecule is totally different.

For the isoelectronic molecules N2 and CO, it has been
reported that the kinetic energies of these molecules are iso-
tropic [23, 24]. In the present study, the T|| − T⊥/2 values
are 0.059 a.u. and −0.015 a.u. for N2 and CO, respectively,
as shown in Table 1, so the kinetic energies are certainly iso-
tropic in the present calculation. However, it was found that
the derivatives of these energies are not isotropic as shown
in Table 1. Then the two components of each orbital term
are discussed. In the 2sσ orbitals in N2 and CO molecules,
which contribute mostly to the force constants, the terms of
the parallel component are slightly larger than those of the
perpendicular one. The other σ -orbital terms show various
tendencies. In the case of the 2σu and 3σg orbitals in N2, the
perpendicular components negatively contribute to the force
constant while the parallel components positively contribute.
As a result, the total derivatives in these orbitals are negative.
On the other hand, both components of the 4σ orbital in CO
are positive values, while in the 5σ orbital they are negative.
In the case of the 1π orbitals, the perpendicular components
contribute mostly to the orbital term in both the N2 and CO
molecules.

4 Concluding remarks

For some diatomic molecules, the restricted Hartree–Fock
calculations with the uniform scaling method were performed.
By using the result that the obtained wave function satisfies
the virial theorem, the force constants were calculated by the
derivatives of the electronic kinetic energy. The electronic ki-
netic energy is the expectation of the one-electron operator,
so it is easy to decompose the force constant. The derivatives
of the electronic kinetic energy were decomposed by some
methods and the contributions of each term to the force con-
stant were estimated. As a result, it was shown that the force
constant is able to be analyzed on the basis of the electronic
kinetic energy.
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